/ News

26.05.2015

New ‘deep learning’ technique enables robot mastery of skills via trial and error

UC Berkeley researchers have developed algorithms that enable robots to learn motor tasks through trial and error using a process that more closely approximates the way humans learn, marking a major milestone in the field of artificial intelligence.

They demonstrated their technique, a type of reinforcement learning, by having a robot complete various tasks — putting a clothes hanger on a rack, assembling a toy plane, screwing a cap on a water bottle, and more — without pre-programmed details about its surroundings.

Video showing BRETT, a PR2 robot, learning various motor tasks through trial and error. BRETT used the same “deep learning” algorithm to master all tasks. (Video courtesy of UC Berkeley Robot Learning Lab, edited by Phil Ebiner)

“What we’re reporting on here is a new approach to empowering a robot to learn,” said Professor Pieter Abbeel of UC Berkeley’s Department of Electrical Engineering and Computer Sciences. “The key is that when a robot is faced with something new, we won’t have to reprogram it. The exact same software, which encodes how the robot can learn, was used to allow the robot to learn all the different tasks we gave it.”

The latest developments will be presented on Thursday, May 28, in Seattle at the International Conference on Robotics and Automation (ICRA). Abbeel is leading the project with fellow UC Berkeley faculty member Trevor Darrell, director of the Berkeley Vision and Learning Center. Other members of the research team are postdoctoral researcher Sergey Levine and Ph.D. student Chelsea Finn.

The work is part of a new People and Robots Initiative at UC’s Center for Information Technology Research in the Interest of Society (CITRIS). The new multi-campus, multidisciplinary research initiative seeks to keep the dizzying advances in artificial intelligence, robotics and automation aligned to human needs.

“Most robotic applications are in controlled environments where objects are in predictable positions,” said Darrell. “The challenge of putting robots into real-life settings, like homes or offices, is that those environments are constantly changing. The robot must be able to perceive and adapt to its surroundings.”

Neural inspiration

Conventional, but impractical, approaches to helping a robot make its way through a 3D world include pre-programming it to handle the vast range of possible scenarios or creating simulated environments within which the robot operates.

Instead, the UC Berkeley researchers turned to a new branch of artificial intelligence known as deep learning, which is loosely inspired by the neural circuitry of the human brain when it perceives and interacts with the world.

BRETT is shown here learning how to screw a cap onto a water bottle. (Photo courtesy of UC Berkeley Robot Learning Lab)

“For all our versatility, humans are not born with a repertoire of behaviors that can be deployed like a Swiss army knife, and we do not need to be programmed,” said Levine. “Instead, we learn new skills over the course of our life from experience and from other humans. This learning process is so deeply rooted in our nervous system, that we cannot even communicate to another person precisely how the resulting skill should be executed. We can at best hope to offer pointers and guidance as they learn it on their own.”

In the world of artificial intelligence, deep learning programs create “neural nets” in which layers of artificial neurons process overlapping raw sensory data, whether it be sound waves or image pixels. This helps the robot recognize patterns and categories among the data it is receiving. People who use Siri on their iPhones, Google’s speech-to-text program or Google Street View might already have benefited from the significant advances deep learning has provided in speech and vision recognition.

Applying deep reinforcement learning to motor tasks has been far more challenging, however, since the task goes beyond the passive recognition of images and sounds.

“Moving about in an unstructured 3D environment is a whole different ballgame,” said Finn. “There are no labeled directions, no examples of how to solve the problem in advance. There are no examples of the correct solution like one would have in speech and vision recognition programs.”

Practice makes perfect

In the experiments, the UC Berkeley researchers worked with a Willow Garage Personal Robot 2 (PR2), which they nicknamed BRETT, or Berkeley Robot for the Elimination of Tedious Tasks.

They presented BRETT with a series of motor tasks, such as placing blocks into matching openings or stacking Lego blocks. The algorithm controlling BRETT’s learning included a reward function that provided a score based upon how well the robot was doing with the task.

BRETT takes in the scene, including the position of its own arms and hands, as viewed by the camera. The algorithm provides real-time feedback via the score based upon the robot’s movements. Movements that bring the robot closer to completing the task will score higher than those that do not. The score feeds back through the neural net, so the robot can learn which movements are better for the task at hand.

This end-to-end training process underlies the robot’s ability to learn on its own. As the PR2 moves its joints and manipulates objects, the algorithm calculates good values for the 92,000 parameters of the neural net it needs to learn.

With this approach, when given the relevant coordinates for the beginning and end of the task, the PR2 could master a typical assignment in about 10 minutes. When the robot is not given the location for the objects in the scene and needs to learn vision and control together, the learning process takes about three hours.

Abbeel says the field will likely see significant improvements as the ability to process vast amounts of data improves.

“With more data, you can start learning more complex things,” he said. “We still have a long way to go before our robots can learn to clean a house or sort laundry, but our initial results indicate that these kinds of deep learning techniques can have a transformative effect in terms of enabling robots to learn complex tasks entirely from scratch. In the next five to 10 years, we may see significant advances in robot learning capabilities through this line of work.”

The Defense Advanced Research Projects Agency, Office of Naval Research, U.S. Army Research Laboratory and National Science Foundation helped support this research.

Source: http://newscenter.berkeley.edu/2015/05/21/deep-learning-robot-masters-skills-via-trial-and-error/




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones